Pieri and Cauchy Formulae for Ribbon Tableaux

نویسندگان

  • Thomas Lam
  • THOMAS LAM
چکیده

In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are spin and weight generating functions for ribbon tableaux. This article is aimed at studying these functions in analogy with Schur functions. In particular we will describe: • a Pieri and dual-Pieri formula for ribbon functions, • a ribbon Murnaghan-Nakayama formula, • ribbon Cauchy and dual Cauchy identities, • and a C-algebra isomorphism ωn : Λ(q) → Λ(q) which sends each Gλ to Gλ′ . We will show that the ribbon Pieri and Murnaghan-Nakayama rules are formally equivalent in a purely combinatorial manner. We will also connect the ribbon Cauchy and Pieri formulae to the combinatorics of ribbon insertion as studied by Shimozono and White [SW2]. In particular we give complete combinatorial proofs for the domino n = 2 case. Résumé. Dans [LLT], Lascoux, Leclerc et Thibon ont introduit des fonctions symétriques Gλ qui sont les series formelles pour tableaux des rubans, selon la rotation et le poids. Cet article est visé à l’étude de ces fonctions dans l’analogie avec les fonctions de Schur. En particulier nous décrirons: • des formules ruban-Pieri et dual-ruban-Pieri, • une formule de ruban Murnagham-Nakayama, • les identités ruban-Cauchy et dual-ruban-Cauchy pour fonctions de ruban, • et un isomorphisme C-algèbre ωn : Λ(q) → Λ(q) qui envoie chaque Gλ à Gλ′ . Nous montrerons que les règles Pieri de et Murnagham-Nakayama sont formellement équivalents dans une manière purement combinatoire. Nous connecterons aussi les formules ruban-Cauchy et ruban-Pieri au combinatoire d’insertion des rubans, comme étudié par Shimozono et White [SW2]. En particulier, nous donnons les preuves combinatoires complétes pour le cas domino n = 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribbon Tableaux and the Heisenberg Algebra

In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are spin and weight generating functions for ribbon tableaux. This article is aimed at studying these functions in analogy with Schur functions. In particular we will describe: • a Pieri and dual-Pieri formula for ribbon functions, • a ribbon Murnagham-Nakayama formula, • ribbon Cauchy and dual Cauchy identities, • and...

متن کامل

A Combinatorial Generalization of the Boson-fermion Correspondence

This article is an attempt to understand the ubiquity of tableaux and of Pieri and Cauchy formulae for combinatorially defined families of symmetric functions. We show that such formulae are to be expected from symmetric functions arising from representations of Heisenberg algebras. The resulting framework that we describe is a generalization of the classical Boson-Fermion correspondence, from ...

متن کامل

Combinatorics of Ribbon Tableaux

This thesis begins with the study of a class of symmetric functions {x} which are generating functions for ribbon tableaux (hereon called ribbon functions), first defined by Lascoux, Leclerc and Thibon. Following work of Fomin and Greene, I introduce a set of operators called ribbon Schur operators on the space of partitions. I develop the theory of ribbon functions using these operators in an ...

متن کامل

A Robinson-schensted-knuth Type Correspondence Related to Schubert Polynomials and Its Applications

We present an analog of the Robinson-Schensted-Knuth correspondence which bijectively proves the Cauchy identity for Schubert polynomials; thus, it generalizes the classical correspondence, which proves the similar identity for Schur functions. Our correspondence is based on a new insertion procedure for certain binary tableaux of staircase shape, which are the analogs of semistandard Young tab...

متن کامل

Pieri Rules for Classical Groups and Equinumeration between Generalized Oscillating Tableaux and Semistandard Tableaux

We present several equinumerous results between generalized oscillating tableaux and semistandard tableaux and give a representation-theoretic proof to them. As one of the key ingredients of the proof, we provide Pieri rules for the symplectic and orthogonal groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004